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Linear Structural Equation Models
@ Random vector X = (X; : i € V) solves
X=AN'X+e,  Varfg] = Q.
Then X = (I — A)~ "¢ has covariance matrix
Y =Var[X] = (I =AN)~TQ(U —-N".

@ We consider homoscedastic errors, Q = w - I, and then focus on the
simpler precision matrix:

1

wG(A7s):Z_1:S(/_/\)(I_/\)T7 S=—.

w

@ The linear homoscedastic Gaussian model given by a directed graph
G=(V,D)is

Mg = {s(l = NI =N : N R, s >0},

where R2

reg:{/\e]R‘/X‘/:/\,-J-:O if i—>j¢D, I—/\invertible}.
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Linear Structural Equation

Example 1

X1 =¢1

Xo = Ao X1 + Ao Xy + &2
X3 =ApXo +e3

Xa = A3a X3 + €4

o O O o

Models: Example

0 0
dos 0 1
0 Az’ "=
0 0

Here, the graph is simple, but the SEM is non-recursive (3 cycle)
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|dentifiability

@ Within the class of DAGs (directed acyclic graphs), the graph G is
known to be identifiable.
[Chen, Drton, and Wang 2019; Peters and Biihimann 2014]

@ Is the graph G identifiable more generally? In which sense?

Definition

Let {M;}%_, be a finite set of algebraic models given by subsets of R™. The
indices i's are generically identifiable if for each pair of (i1, ip),

dim(M;, N M,,) < max (dim(M;,), dim(M,,)) .

o Different dimensions: Automatically generically identifiable

@ Same dimension: Intersection of two models is a lower dimensional set
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Simple Graphs and Dimension

@ We focus on simple directed graphs, allowing cycles

Theorem

Let G = (V, D) be a simple directed graph. Then the model M¢ has
expected dimension:
dim(M¢) = |D| + 1.

Proof.

Fact: dim(Mg) = maximal rank of the Jacobian of ).

At A =0 and s = 1, the Jacobian J(¢¢) contains a diagonal
(ID] + 1) x (|D] + 1) submatrix, with diagonal entries £1.

At this point and also generically the Jacobian has full rank |D| + 1.

O

@ Not true for general non-simple graphs
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Jacobian: Example

Example 3
G =(V,D), with V ={1,2,3,4} and D = {(1,2),(2,4),(1,3),(3,4)}

Figure: Example 3

J(e) :

K11 K22 K33 Kag K12 K23 K3q Ki3 Ko Kiq
2531p 0 0 [ —s 0 0 0 0 0 A2
2513 0 0 0 0 0 0 —s 0 0 213
[ 254 0 0 0 sA34 0 0 —s 0 o4
0 0 2sA3, 0 0 sA24 —s 0 0 0 N34
14223, 423 1423, 1+, 1 —A2 AsAzs —Az; —A13 —Ax 0 s

rank(Jias,12,34,13,24}) = 5
el IS 0 WC B 6718



Jacobian Matroid

Definition
Suppose M = Im(¢) with parametrization ¢(0) = (¢1(0), - .., ¢,(0)). Let

J(¢)=(%)71§i§d,1§j§r

be the Jacobian of ¢. Then the Jacobian matroid of model M is the
matroid M(¢) = (E,Z), where

e E = [r] is the ground set, and

@ every independent set S € 7 is such that the columns of J(¢) indexed
by S are linearly independent over the fraction field R(9).

@ Maximal independent sets determine the Jacobian matriod

@ Every maximal independent set is of the size equaling to the rank
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Proving Identifiability with Algebraic Matroids

Proposition [Hollering and Sullivant 2021]

Let M; and M, be two parameterized models in R™ with parameterization
11 and 1. Assuming without loss of generality that dim(M;) > dim(M,), if
there exists a subset S of the columns such that

S € M(32) \ M(¥h1),

then dim(M; N M,) < min(dim(My),dim(Ma)).

@ A sufficient condition for generic identifiability

e M;, M, exchangeable when dim(M;) = dim(M,)
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|dentifiability Results

Theorem 1

Let G be a collection of simple directed graphs. If every graph G € G has a
unique outdegree sequence in the collection, then the models of the graphs
in G are generically identifiable under the homoscedastic errors assumption.

Figure: Example 3
@ The outdegree sequence is {2,1,1,0}.
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|dentifiability Results

Theorem 2

Let G’ be the collection of transitive triangle-free simple directed graphs
with node set V, i.e., G € G’ has the property

Vj e V ,Vie Ch(j), Ch(j)N Ch(i) = 0. Then the models of the graphs in
G’ are generically identifiable under the homoscedastic errors assumption.

Figure: transitive triangle Figure: non-transitive triangle
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|dentifiability Results

Theorem 3

Let G” be the collection of simple directed graphs with node set V and the
property that Vi € V/, there exists at most one j € Ch(/) such that

Ch(i) N Ch(j) # 0. Then the models of the graphs in collection G" are
generically identifiable under the homoscedastic errors assumption.

Figure: A graph in G”
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Outdegree Proposition

How to certify different matroids?

o If 35 s.t. rank(J2) # rank(J2), then J* and J? have different matroids
@ Want to find this kind of set S

Lemma 1

Let G = (V, D) be a directed graph such that dim(Mg) = |[D|+ 1. If G is
not complete, then for every node i and any column set S of size |D| + 1
such that {Ki1, Kio, ..., Ki(i—1), Kii, Ki(it1), ---} NS = 0, the submatrix Js has
rank at most |D| — |Ch(i)| + 1.

v

Proof Idea.

Counting zero rows.
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Outdegree Proposition

Lemma 2
Let G = (V, D) be a simple directed graph. If G is not complete, then for
every node i, there exists a column set S of size |D| + 1 such that
{Ki1, Kiz, ..., Ki(i—l),K,-;,K,-(,-+1),.,,} NS = () and the submatrix Js has rank at
least |D| — |Ch(i)| + 1.
v
Proof Idea.
Kiojo K Kiqia Kii Kimiy
0 -1 O(e)
0 0 0 o) 1
0 2¢e 0 X X
6 0 2.5 X X
0 x . X X cee X #{uncertain rows}
: : = |ch(i)|
0 X X X X
1 2 2 0 0
v
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Outdegree Proposition

Proposition 1

Let G = (V,Dy), G, = (V, D,) be two simple directed graphs. If one of
the graphs is not complete and there exists a node i such that G; and G;
have outgoing edge set at i of different size, then Gy and Gp have different
Jacobian matroids. Additionally, if G; and G, are complete but / is not a
sink node in either graph, the difference property still holds.

@ A large proportion of the possible pairs of graphs can be certified to
give different matroids.

@ However there exist still rather simple counterexamples.
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Example: Outdegree Proposition Not Applicable

Gég Gé@

Example 4

Figure: Gy Figure: G,
v
Let S = {22,33,23,34,14},
K22 K33 Ka3 K34 K14
0 0 0 0 0 A1
1 25Xp3 0 —s 0 0 A3 1
— 0 25X34 0 0 0 A3g ( ) —
JS - 0 0 0 0 —s Agp 0 rank JS - 47
1423, 1423, —X3 —xy —Ag s
K22 K33 Ka3 K34 K14
25X\o1 0 0 0 0 Aol
5 0 25X3n —s 0 0 A3 >
— 0 0 0 —s 0 13 ( ) —
JS - 0 0 0 0 —s g rank JS =5.
1423, 1423, —An -3 A s
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Certifying Different Matroids

Proposition 2

Let G’ be the collection of transitive triangle-free simple directed graphs
with node set V, i.e., G € G’ has the property

Vj eV Vie Ch(j), Ch(j)N Ch(i) =0. Let G, = (V,Dy), G, = (V, D)
be two different graphs in G’. Then G; and G, have different Jacobian
matroids.

Proposition 3

Let G” be the collection of simple directed graphs with node set V' and has
the property that Vi € V , there exists at most one j € Ch(/) such that
Ch(i)n Ch(j) # 0. Let Gy = (V, D1), G2 = (V, D,) be two different graphs
in G”. Then G; and G, have different Jacobian matroids.
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Computational checks for |V| < 6

Methods
e |V| = 3: Manual computations
e |V| =4,5: Complete symbolic rank checks

e |V| = 6: Brute force check is extremely time-consuming!

To resolve the issue:

@ Comparisons: within the subclasses indexed by outdegree sequences
o Valid outdegree sequences and simple graphs: depth first search

o Parameters: random integers

Results
@ Most of the simple directed graphs have unique matroids

@ Some graph pairs have the same matroids, but can be distinguished by
node variances
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THANK YOU!
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