Identifiability of linear structural equation models with homoscedastic errors using algebraic matroids

Jun Wu

(joint work with Mathias Drton)

Department of Mathematics, Technische Universität München

Bernoulli-IMS 10th World Congress in Probability and Statistics July 19 - 23, 2021

Linear Structural Equation Models

 $\mathsf{Random}\ \mathsf{vector}\ X = (X_i : i \in V)$ solves

$$
X = \Lambda^T X + \varepsilon, \qquad \text{Var}[\varepsilon] = \Omega.
$$

Then $X = (I - \Lambda)^{-T} \varepsilon$ has covariance matrix

$$
\Sigma = \text{Var}[X] = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}.
$$

• We consider homoscedastic errors, $\Omega = \omega \cdot l$, and then focus on the simpler precision matrix:

$$
\psi_G(\Lambda, s) = \Sigma^{-1} = s(I - \Lambda)(I - \Lambda)^T, \quad s = \frac{1}{\omega}.
$$

• The linear homoscedastic Gaussian model given by a directed graph $G = (V, D)$ is

$$
M_G = \left\{ s(I - \Lambda)(I - \Lambda)^T : \Lambda \in \mathbb{R}^D_{\text{reg}}, s > 0 \right\},
$$

where $\mathbb{R}^D_{\text{reg}} = \left\{ \Lambda \in \mathbb{R}^{V \times V} : \Lambda_{ij} = 0 \text{ if } i \to j \notin D, I - \Lambda \text{ invertible} \right\}.$

Linear Structural Equation Models: Example

Here, the graph is simple, but the SEM is non-recursive (\exists cycle)

Identifiability

- Within the class of DAGs (directed acyclic graphs), the graph G is known to be identifiable. [Chen, Drton, and Wang [2019;](#page-17-1) Peters and Bühlmann [2014\]](#page-17-2)
- Is the graph G identifiable more generally? In which sense?

Definition

Let $\{M_i\}_{i=1}^k$ be a finite set of algebraic models given by subsets of \mathbb{R}^m . The indices *i's* are generically identifiable if for each pair of (i_1, i_2) ,

 $\mathsf{dim}\boldsymbol{(}M_{i_1}\cap M_{i_2}\boldsymbol{)}<\mathsf{max}\,(\mathsf{dim}(M_{i_1}),\mathsf{dim}(M_{i_2})\boldsymbol{)}$.

- Different dimensions: Automatically generically identifiable
- Same dimension: Intersection of two models is a lower dimensional set

Simple Graphs and Dimension

• We focus on simple directed graphs, allowing cycles

Theorem

Let $G = (V, D)$ be a simple directed graph. Then the model M_G has expected dimension:

 $dim(M_G) = |D| + 1.$

Proof.

Fact: dim(M_G) = maximal rank of the Jacobian of ψ_G .

At $\Lambda = 0$ and $s = 1$, the Jacobian $J(\psi_G)$ contains a diagonal $(|D|+1) \times (|D|+1)$ submatrix, with diagonal entries ± 1 . At this point and also generically the Jacobian has full rank $|D| + 1$.

• Not true for general non-simple graphs

Jacobian: Example

Example 3

 $G = (V, D)$, with $V = \{1, 2, 3, 4\}$ and $D = \{(1, 2), (2, 4), (1, 3), (3, 4)\}$

Figure: Example 3

 $J(\psi_G)$:

rank $(J_{\{44,12,34,13,24\}})=5$

Jacobian Matroid

Definition

Suppose $M = \text{Im}(\phi)$ with parametrization $\phi(\theta) = (\phi_1(\theta), \dots, \phi_r(\theta))$. Let

$$
J(\phi) = \left(\frac{\partial \phi_j}{\partial \theta_i}\right), 1 \leq i \leq d, 1 \leq j \leq r
$$

be the Jacobian of ϕ . Then the Jacobian matroid of model M is the matroid $\mathcal{M}(\phi) = (E, \mathcal{I})$, where

- \bullet $E = [r]$ is the ground set, and
- every independent set $S \in \mathcal{I}$ is such that the columns of $J(\phi)$ indexed by S are linearly independent over the fraction field $\mathbb{R}(\theta)$.
- Maximal independent sets determine the Jacobian matriod
- Every maximal independent set is of the size equaling to the rank

Proving Identifiability with Algebraic Matroids

Proposition [Hollering and Sullivant [2021\]](#page-17-3)

Let M_1 and M_2 be two parameterized models in \mathbb{R}^m with parameterization ψ_1 and ψ_2 . Assuming without loss of generality that dim(M_1) > dim(M_2), if there exists a subset S of the columns such that

 $S \in \mathcal{M}(\psi_2) \setminus \mathcal{M}(\psi_1)$,

then dim $(M_1 \cap M_2)$ < min(dim (M_1) , dim (M_2)).

- A sufficient condition for generic identifiability
- M_1, M_2 exchangeable when dim $(M_1) = \dim(M_2)$

Identifiability Results

Theorem 1

Let G be a collection of simple directed graphs. If every graph $G \in \mathcal{G}$ has a unique outdegree sequence in the collection, then the models of the graphs in G are generically identifiable under the homoscedastic errors assumption.

Figure: Example 3

• The outdegree sequence is $\{2, 1, 1, 0\}$.

Identifiability Results

Theorem 2

Let \mathcal{G}' be the collection of transitive triangle-free simple directed graphs with node set V, i.e., $G \in \mathcal{G}'$ has the property $\forall i \in V$, $\forall i \in Ch(i)$, $Ch(i) \cap Ch(i) = \emptyset$. Then the models of the graphs in \mathcal{G}' are generically identifiable under the homoscedastic errors assumption.

Figure: transitive triangle

Figure: non-transitive triangle

Identifiability Results

Theorem 3

Let \mathcal{G}'' be the collection of simple directed graphs with node set V and the property that $\forall i \in V$, there exists at most one $j \in Ch(i)$ such that $Ch(i) \cap Ch(j) \neq \emptyset$. Then the models of the graphs in collection \mathcal{G}'' are generically identifiable under the homoscedastic errors assumption.

Figure: A graph in \mathcal{G}''

Outdegree Proposition

How to certify different matroids?

- If $\exists S$ s.t. rank (J_S^1) ≠ rank (J_S^2) , then J^1 and J^2 have different matroids
- Want to find this kind of set S

Lemma 1

Let $G = (V, D)$ be a directed graph such that dim $(M_G) = |D| + 1$. If G is not complete, then for every node *i* and any column set S of size $|D| + 1$ such that $\{K_{i1}, K_{i2}, ..., K_{i(i-1)}, K_{ii}, K_{i(i+1)}, ...\} \cap S = \emptyset$, the submatrix J_S has rank at most $|D| - |Ch(i)| + 1$.

Proof Idea.

Counting zero rows.

Outdegree Proposition

Lemma 2

Let $G = (V, D)$ be a simple directed graph. If G is not complete, then for every node *i*, there exists a column set S of size $|D| + 1$ such that $\{K_{i1}, K_{i2}, ..., K_{i(i-1), K_{ii}, K_{i(i+1),...}}\} \cap S = \emptyset$ and the submatrix J_S has rank at least $|D| - |Ch(i)| + 1$.

Proof Idea.

Outdegree Proposition

Proposition 1

Let $G_1 = (V, D_1)$, $G_2 = (V, D_2)$ be two simple directed graphs. If one of the graphs is not complete and there exists a node *i* such that G_1 and G_2 have outgoing edge set at *i* of different size, then G_1 and G_2 have different Jacobian matroids. Additionally, if G_1 and G_2 are complete but *i* is not a sink node in either graph, the difference property still holds.

- A large proportion of the possible pairs of graphs can be certified to give different matroids.
- However there exist still rather simple counterexamples.

Example: Outdegree Proposition Not Applicable

Let
$$
S = \{22, 33, 23, 34, 14\}
$$
,

$$
J_S^1=\begin{pmatrix} \frac{K_2}{2} & \frac{K_{33}}{2} & \frac{K_{33}}{2} & \frac{K_{34}}{2} & \frac{K_{14}}{2} \\ \frac{K_{32}}{2} & 0 & -s & 0 & 0 \\ 0 & 2s\lambda_{23} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -s \\ 1+\lambda_{23}^2 & 1+\lambda_{34}^2 & -\lambda_{23} & -\lambda_{34} & -\lambda_{41} \end{pmatrix} \, \begin{matrix} \frac{K_{12}}{2} \\ \frac{K_{23}}{2} \\ \frac{K_{34}}{2} \\ \frac{K_{44}}{2} \\ \frac{K_{52}}{2} \end{matrix}, \text{ rank}(J_S^1)=4,
$$

$$
J_S^2=\begin{pmatrix} \frac{K_{22}}{2} & \frac{K_{33}}{2} & \frac{K_{23}}{2} & \frac{K_{34}}{2} & K_{14} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -s & 0 \\ 1+\lambda_{21}^2 & 1+\lambda_{32}^2 & -\lambda_{32} & -\lambda_{43} & -\lambda_{14} \end{matrix} \quad \begin{matrix} \frac{K_{12}}{2} \\ \frac{K_{21}}{2} \\ \frac{K_{33}}{2} \\ \frac{K_{34}}{2} \\ \frac{K_{35}}{2} \\ \frac{K_{36}}{2} \\ \frac{K_{37}}{2} \\ \frac{K_{38}}{2} \\ \frac{K_{39}}{2} \\
$$

Certifying Different Matroids

Proposition 2

Let \mathcal{G}' be the collection of transitive triangle-free simple directed graphs with node set V, i.e., $G \in \mathcal{G}'$ has the property $\forall j \in V$, $\forall i \in Ch(j)$, $Ch(i) \cap Ch(i) = \emptyset$. Let $G_1 = (V, D_1)$, $G_2 = (V, D_2)$ be two different graphs in \mathcal{G}^{\prime} . Then \mathcal{G}_{1} and \mathcal{G}_{2} have different Jacobian matroids.

Proposition 3

Let \mathcal{G}'' be the collection of simple directed graphs with node set V and has the property that $\forall i \in V$, there exists at most one $j \in Ch(i)$ such that $Ch(i) \cap Ch(j) \neq \emptyset$. Let $G_1 = (V, D_1)$, $G_2 = (V, D_2)$ be two different graphs in \mathcal{G}'' . Then G_1 and G_2 have different Jacobian matroids.

Computational checks for $|V| < 6$

Methods

- $|V| = 3$: Manual computations
- $|V| = 4.5$: Complete symbolic rank checks
- $|V| = 6$: Brute force check is extremely time-consuming!

To resolve the issue:

- Comparisons: within the subclasses indexed by outdegree sequences
- Valid outdegree sequences and simple graphs: depth first search
- Parameters: random integers

Results

- Most of the simple directed graphs have unique matroids
- Some graph pairs have the same matroids, but can be distinguished by node variances

References

- 靠 Chen, Wenyu, Mathias Drton, and Y Samuel Wang (2019). "On causal discovery with an equal-variance assumption". In: Biometrika 106.4, pp. 973–980.
- ā. Hollering, Benjamin and Seth Sullivant (2021). "Identifiability in phylogenetics using algebraic matroids". In: Journal of Symbolic Computation 104, pp. 142–158.
- Peters, Jonas and Peter Bühlmann (2014). "Identifiability of Gaussian ã structural equation models with equal error variances". In: Biometrika 101.1, pp. 219–228.

THANK YOU!