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Linear Structural Equation Models

Random vector X = (Xi : i ∈ V ) solves

X = ΛTX + ε, Var[ε] = Ω.

Then X = (I − Λ)−T ε has covariance matrix

Σ = Var[X ] = (I − Λ)−TΩ(I − Λ)−1.

We consider homoscedastic errors, Ω = ω · I , and then focus on the
simpler precision matrix:

ψG (Λ, s) = Σ−1 = s(I − Λ)(I − Λ)T , s =
1

ω
.

The linear homoscedastic Gaussian model given by a directed graph
G = (V ,D) is

MG =
{
s(I − Λ)(I − Λ)T : Λ ∈ RD

reg, s > 0
}
,

where RD
reg =

{
Λ ∈ RV×V : Λij = 0 if i → j /∈ D, I − Λ invertible

}
.
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Linear Structural Equation Models: Example

Example 1

X1 = ε1

X2 = λ12X1 + λ42X4 + ε2

X3 = λ23X2 + ε3

X4 = λ34X3 + ε4

X1

ω

X2

ω

X3

ω

X4

ω

λ12 λ23

λ34

λ42

Λ =


0 λ12 0 0
0 0 λ23 0
0 0 0 λ34

0 λ42 0 0

 , s =
1

ω

Here, the graph is simple, but the SEM is non-recursive (∃ cycle)
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Identifiability

Within the class of DAGs (directed acyclic graphs), the graph G is
known to be identifiable.
[Chen, Drton, and Wang 2019; Peters and Bühlmann 2014]

Is the graph G identifiable more generally? In which sense?

Definition

Let {Mi}ki=1 be a finite set of algebraic models given by subsets of Rm. The
indices i ’s are generically identifiable if for each pair of (i1, i2),

dim(Mi1 ∩Mi2 ) < max (dim(Mi1 ), dim(Mi2 )) .

Different dimensions: Automatically generically identifiable

Same dimension: Intersection of two models is a lower dimensional set
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Simple Graphs and Dimension

We focus on simple directed graphs, allowing cycles

Theorem

Let G = (V ,D) be a simple directed graph. Then the model MG has
expected dimension:

dim(MG ) = |D|+ 1.

Proof.

Fact: dim(MG ) = maximal rank of the Jacobian of ψG .

At Λ = 0 and s = 1, the Jacobian J(ψG ) contains a diagonal
(|D|+ 1)× (|D|+ 1) submatrix, with diagonal entries ±1.

At this point and also generically the Jacobian has full rank |D|+ 1.

Not true for general non-simple graphs
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Jacobian: Example

Example 3

G = (V ,D), with V = {1, 2, 3, 4} and D = {(1, 2), (2, 4), (1, 3), (3, 4)}

1

2

3

4

Figure: Example 3

J(ψG ) :

K11 K22 K33 K44 K12 K23 K34 K13 K24 K14


2sλ12 0 0 0 −s 0 0 0 0 0 λ12
2sλ13 0 0 0 0 0 0 −s 0 0 λ13

0 2sλ24 0 0 0 sλ34 0 0 −s 0 λ24
0 0 2sλ34 0 0 sλ24 −s 0 0 0 λ34

1 + λ2
12 + λ2

13 1 + λ2
24 1 + λ2

34 1 −λ12 λ24λ34 −λ34 −λ13 −λ24 0 s

rank(J{44,12,34,13,24}) = 5
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Jacobian Matroid

Definition

Suppose M = Im(φ) with parametrization φ(θ) = (φ1(θ), . . . , φr (θ)). Let

J(φ) =

(
∂φj
∂θi

)
, 1 ≤ i ≤ d , 1 ≤ j ≤ r

be the Jacobian of φ. Then the Jacobian matroid of model M is the
matroid M(φ) = (E , I), where

E = [r ] is the ground set, and

every independent set S ∈ I is such that the columns of J(φ) indexed
by S are linearly independent over the fraction field R(θ).

Maximal independent sets determine the Jacobian matriod

Every maximal independent set is of the size equaling to the rank
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Proving Identifiability with Algebraic Matroids

Proposition [Hollering and Sullivant 2021]

Let M1 and M2 be two parameterized models in Rm with parameterization
ψ1 and ψ2. Assuming without loss of generality that dim(M1) ≥ dim(M2), if
there exists a subset S of the columns such that

S ∈M(ψ2) \ M(ψ1),

then dim(M1 ∩M2) < min(dim(M1), dim(M2)).

A sufficient condition for generic identifiability

M1,M2 exchangeable when dim(M1) = dim(M2)
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Identifiability Results

Theorem 1

Let G be a collection of simple directed graphs. If every graph G ∈ G has a
unique outdegree sequence in the collection, then the models of the graphs
in G are generically identifiable under the homoscedastic errors assumption.

1

2

3

4

Figure: Example 3

The outdegree sequence is {2, 1, 1, 0}.
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Identifiability Results

Theorem 2

Let G′ be the collection of transitive triangle-free simple directed graphs
with node set V , i.e., G ∈ G′ has the property
∀j ∈ V ,∀i ∈ Ch(j), Ch(j) ∩ Ch(i) = ∅. Then the models of the graphs in
G′ are generically identifiable under the homoscedastic errors assumption.

1

2 3

Figure: transitive triangle

1

2 3

Figure: non-transitive triangle
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Identifiability Results

Theorem 3

Let G′′ be the collection of simple directed graphs with node set V and the
property that ∀i ∈ V , there exists at most one j ∈ Ch(i) such that
Ch(i) ∩ Ch(j) 6= ∅. Then the models of the graphs in collection G′′ are
generically identifiable under the homoscedastic errors assumption.

1 2

3 4 5 6 7

Figure: A graph in G′′
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Outdegree Proposition

How to certify different matroids?

If ∃S s.t. rank(J1
S) 6= rank(J2

S), then J1 and J2 have different matroids

Want to find this kind of set S

Lemma 1

Let G = (V ,D) be a directed graph such that dim(MG ) = |D|+ 1. If G is
not complete, then for every node i and any column set S of size |D|+ 1
such that {Ki1,Ki2, ...,Ki(i−1),Kii ,Ki(i+1), ...} ∩ S = ∅, the submatrix JS has
rank at most |D| − |Ch(i)|+ 1.

Proof Idea.

Counting zero rows.
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Outdegree Proposition

Lemma 2

Let G = (V ,D) be a simple directed graph. If G is not complete, then for
every node i , there exists a column set S of size |D|+ 1 such that
{Ki1,Ki2, ...,Ki(i−1),Kii ,Ki(i+1),...} ∩ S = ∅ and the submatrix JS has rank at
least |D| − |Ch(i)|+ 1.

Proof Idea.

Kj0 j0
· · · Kj1 j1

· · · Kjq jq Kl1 l2
· · · Klmln



0 · · · 0 · · · 0 −1 · · · O(ε)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
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0 · · · 0 · · · 0 O(ε) · · · −1
0 · · · 2ε · · · 0 × · · · ×
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
0 · · · 0 · · · 2ε × · · · ×
0 · · · × · · · × × · · · × #{uncertain rows}
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. = |Ch(i)|
0 · · · × · · · × × · · · ×
1 · · · 2 · · · 2 0 · · · 0
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Outdegree Proposition

Proposition 1

Let G1 = (V ,D1), G2 = (V ,D2) be two simple directed graphs. If one of
the graphs is not complete and there exists a node i such that G1 and G2

have outgoing edge set at i of different size, then G1 and G2 have different
Jacobian matroids. Additionally, if G1 and G2 are complete but i is not a
sink node in either graph, the difference property still holds.

A large proportion of the possible pairs of graphs can be certified to
give different matroids.

However there exist still rather simple counterexamples.
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Example: Outdegree Proposition Not Applicable

Example 4

1

2

3

4

Figure: G1

1

2

3

4

Figure: G2

Let S = {22, 33, 23, 34, 14},

J1
S =

K22 K33 K23 K34 K14


0 0 0 0 0 λ12
2sλ23 0 −s 0 0 λ23

0 2sλ34 0 0 0 λ34
0 0 0 0 −s λ41

1 + λ2
23 1 + λ2

34 −λ23 −λ34 −λ41 s

, rank(J1
S) = 4,

J2
S =

K22 K33 K23 K34 K14


2sλ21 0 0 0 0 λ21
0 2sλ32 −s 0 0 λ32
0 0 0 −s 0 λ43
0 0 0 0 −s λ14

1 + λ2
21 1 + λ2

32 −λ32 −λ43 −λ14 s

, rank(J2
S) = 5.
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Certifying Different Matroids

Proposition 2

Let G′ be the collection of transitive triangle-free simple directed graphs
with node set V , i.e., G ∈ G′ has the property
∀j ∈ V ,∀i ∈ Ch(j), Ch(j) ∩ Ch(i) = ∅. Let G1 = (V ,D1), G2 = (V ,D2)
be two different graphs in G′. Then G1 and G2 have different Jacobian
matroids.

Proposition 3

Let G′′ be the collection of simple directed graphs with node set V and has
the property that ∀i ∈ V , there exists at most one j ∈ Ch(i) such that
Ch(i) ∩ Ch(j) 6= ∅. Let G1 = (V ,D1), G2 = (V ,D2) be two different graphs
in G′′. Then G1 and G2 have different Jacobian matroids.
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Computational checks for |V | ≤ 6

Methods

|V | = 3: Manual computations

|V | = 4, 5: Complete symbolic rank checks

|V | = 6: Brute force check is extremely time-consuming!

To resolve the issue:

Comparisons: within the subclasses indexed by outdegree sequences

Valid outdegree sequences and simple graphs: depth first search

Parameters: random integers

Results

Most of the simple directed graphs have unique matroids

Some graph pairs have the same matroids, but can be distinguished by
node variances
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THANK YOU!
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